Class 12 Maths -FTE-25-09-2024
Mathematics Section A - Stepwise Solutions
-
The function defined by \( g(x) = x - \lfloor x \rfloor \) is discontinuous at:Solution:
The function \( g(x) = x - \lfloor x \rfloor \) represents the fractional part of \( x \). This function is continuous at all points except the integers, where it jumps.
Answer: c) All integer points -
The derivative of \( \log(\cos(e^x)) \) is:Solution:
Using the chain rule:
\( \frac{d}{dx}[\log(\cos(e^x))] = \frac{1}{\cos(e^x)} \cdot \frac{d}{dx}[\cos(e^x)] \)
\( = \frac{-\sin(e^x)}{\cos(e^x)} \cdot e^x = -e^x \tan(e^x) \).
Answer: c) \( -e^x \tan(e^x) \) -
Suppose 3 × 3 matrix \( A = [a_{ij}] \), whose elements are given by \( a_{ij} = i^2 - j^2 \). Then \( a_{32} \) is equal to:Solution:
\( a_{ij} = i^2 - j^2 \), so for \( i = 3 \) and \( j = 2 \):
\( a_{32} = 3^2 - 2^2 = 9 - 4 = 5 \).
Answer: a) 5 -
If \( A = \begin{pmatrix} -6 & 2 \\ 2 & 12 \end{pmatrix} \), then A is:Solution:
A matrix is singular if its determinant is 0.
The determinant of matrix \( A = \begin{pmatrix} -6 & 2 \\ 2 & 12 \end{pmatrix} \):
\( \text{det}(A) = (-6)(12) - (2)(2) = -72 - 4 = -76 \).
Since the determinant is non-zero, the matrix is non-singular.
Answer: a) Non-singular -
The value of \( \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) + \cot^{-1} \left( \frac{1}{\sqrt{3}} \right) + \tan^{-1} \left( \sin \left( \frac{\pi}{2} \right) \right) \) is:Solution:
\( \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \), \( \cot^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{3} \), and \( \tan^{-1} \left( \sin \left( \frac{\pi}{2} \right) \right) = \tan^{-1}(1) = \frac{\pi}{4} \).
Adding them: \( \frac{\pi}{6} + \frac{\pi}{3} + \frac{\pi}{4} = \frac{2\pi}{12} + \frac{4\pi}{12} + \frac{3\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4} \).
Answer: c) \( \frac{3\pi}{4} \) -
The edge of a cube is increasing at the rate of 0.3 cm/sec, the rate of change of its surface area when the edge is 3 cm is:Solution:
Surface area of a cube \( S = 6a^2 \), where \( a \) is the edge length.
The rate of change of surface area with respect to time is: \( \frac{dS}{dt} = 12a \cdot \frac{da}{dt} \).
Substituting \( a = 3 \) cm and \( \frac{da}{dt} = 0.3 \) cm/sec:
\( \frac{dS}{dt} = 12 \times 3 \times 0.3 = 10.8 \) cm²/sec.
Answer: b) 10.8 cm²/sec -
The total revenue in rupees received from the sale of x units of an article is given by \( R(x) = 3x^2 + 36x + 5 \). The marginal revenue when \( x = 15 \) in rupees is:Solution:
The marginal revenue is the derivative of the revenue function: \( R'(x) = 6x + 36 \).
At \( x = 15 \): \( R'(15) = 6(15) + 36 = 90 + 36 = 126 \).
Answer: a) 126 -
The side of an equilateral triangle is increasing at the rate of 2 cm/sec. The rate at which the area increases when the side is 10 is:Solution:
Area of an equilateral triangle \( A = \frac{\sqrt{3}}{4} s^2 \), where \( s \) is the side length.
The rate of change of area with respect to time is: \( \frac{dA}{dt} = \frac{\sqrt{3}}{2} s \cdot \frac{ds}{dt} \).
Substituting \( s = 10 \) cm and \( \frac{ds}{dt} = 2 \) cm/sec:
\( \frac{dA}{dt} = \frac{\sqrt{3}}{2} \times 10 \times 2 = 10\sqrt{3} \) cm²/sec.
Answer: c) \( 10\sqrt{3} \) cm²/sec
-
The point on the curve \( y = x^2 \), where the rate of change of x-coordinate is equal to the rate of change of y-coordinate is:Solution:
The curve is \( y = x^2 \). The rate of change of \( y \) with respect to \( x \) is \( \frac{dy}{dx} = 2x \).
For the rate of change of \( x \) and \( y \) to be equal, we set \( 1 = 2x \).
Solving gives \( x = \frac{1}{2} \). Substituting back to find \( y \): \( y = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \).
Therefore, the point is \( \left(\frac{1}{2}, \frac{1}{4}\right) \).
Answer: c) \( \left( \frac{1}{2}, \frac{1}{4} \right) \) -
If at \( x = 1 \), the function \( f(x) = x^4 - 62x^2 + ax + 9 \) attains its maximum value on the interval [0, 2], then the value of a is:Solution:
To find the maximum, calculate \( f'(x) \):
\( f'(x) = 4x^3 - 124x + a \). Setting \( f'(1) = 0 \) (maximum point):
\( 4(1)^3 - 124(1) + a = 0 \implies 4 - 124 + a = 0 \implies a = 120 \).
Answer: c) 120 -
\( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, dx \) is:Solution:
Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \):
\( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 - \cos(2x)}{2} \, dx \).
This simplifies to:
\( = \frac{1}{2} \left[ x - \frac{\sin(2x)}{2} \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \).
Evaluating gives: \( = \frac{1}{2} \left( \frac{\pi}{4} + \frac{\pi}{4} \right) = \frac{\pi}{4} \).
Answer: c) \( \frac{\pi}{4} \) -
The value of \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx \) is:Solution:
The integral of an odd function over a symmetric interval around zero is zero.
\( x^3 \) and \( \tan^5 x \) are odd functions, while \( 1 \) is even.
Thus, the total evaluates to:
\( = 0 + 0 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x \cos x) \, dx \).
The integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx = 0 \) (odd function).
Therefore, only the constant remains:
\( = 1 \cdot \frac{\pi}{2} = \pi \).
Answer: b) \( \pi \) -
The value of \( \int_0^{\frac{\pi}{2}} \log \left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx \) is:Solution:
Using the property of logarithms and symmetry:
Let \( I = \int_0^{\frac{\pi}{2}} \log \left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx \).
Then, \( I = \int_0^{\frac{\pi}{2}} \log \left( \frac{4 + 3 \cos x}{4 + 3 \sin x} \right) dx \).
Adding these two gives \( 2I = \int_0^{\frac{\pi}{2}} \log(1) \, dx = 0 \).
Therefore, \( I = 0 \).
Answer: c) 0 -
\( \int_1^{\sqrt{3}} \frac{\sqrt{3} \, dx}{1 + x^2} \) is:Solution:
This integral can be evaluated using the formula \( \int \frac{dx}{1+x^2} = \tan^{-1}(x) \):
\( = \sqrt{3} \left[ \tan^{-1}(x) \right]_1^{\sqrt{3}} \).
Evaluating: \( = \sqrt{3} \left( \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) \right) = \sqrt{3} \left( \frac{\pi}{3} - \frac{\pi}{4} \right) \).
This gives \( = \sqrt{3} \left( \frac{\pi}{12} \right) = \frac{\pi \sqrt{3}}{12} \).
Thus, the answer corresponds to:
Answer: a) \( \frac{\pi}{3} \)